🤖
hacktricks
  • 👾Welcome!
    • HackTricks
    • HackTricks Values & FAQ
    • About the author
  • 🤩Generic Methodologies & Resources
    • Pentesting Methodology
    • External Recon Methodology
      • Wide Source Code Search
      • Github Dorks & Leaks
    • Pentesting Network
      • DHCPv6
      • EIGRP Attacks
      • GLBP & HSRP Attacks
      • IDS and IPS Evasion
      • Lateral VLAN Segmentation Bypass
      • Network Protocols Explained (ESP)
      • Nmap Summary (ESP)
      • Pentesting IPv6
      • WebRTC DoS
      • Spoofing LLMNR, NBT-NS, mDNS/DNS and WPAD and Relay Attacks
      • Spoofing SSDP and UPnP Devices with EvilSSDP
    • Pentesting Wifi
      • Evil Twin EAP-TLS
    • Phishing Methodology
      • Clone a Website
      • Detecting Phishing
      • Phishing Files & Documents
    • Basic Forensic Methodology
      • Baseline Monitoring
      • Anti-Forensic Techniques
      • Docker Forensics
      • Image Acquisition & Mount
      • Linux Forensics
      • Malware Analysis
      • Memory dump analysis
        • Volatility - CheatSheet
      • Partitions/File Systems/Carving
        • File/Data Carving & Recovery Tools
      • Pcap Inspection
        • DNSCat pcap analysis
        • Suricata & Iptables cheatsheet
        • USB Keystrokes
        • Wifi Pcap Analysis
        • Wireshark tricks
      • Specific Software/File-Type Tricks
        • Decompile compiled python binaries (exe, elf) - Retreive from .pyc
        • Browser Artifacts
        • Deofuscation vbs (cscript.exe)
        • Local Cloud Storage
        • Office file analysis
        • PDF File analysis
        • PNG tricks
        • Video and Audio file analysis
        • ZIPs tricks
      • Windows Artifacts
        • Interesting Windows Registry Keys
    • Brute Force - CheatSheet
    • Python Sandbox Escape & Pyscript
      • Bypass Python sandboxes
        • LOAD_NAME / LOAD_CONST opcode OOB Read
      • Class Pollution (Python's Prototype Pollution)
      • Python Internal Read Gadgets
      • Pyscript
      • venv
      • Web Requests
      • Bruteforce hash (few chars)
      • Basic Python
    • Exfiltration
    • Tunneling and Port Forwarding
    • Threat Modeling
    • Search Exploits
    • Reverse Shells (Linux, Windows, MSFVenom)
      • MSFVenom - CheatSheet
      • Reverse Shells - Windows
      • Reverse Shells - Linux
      • Full TTYs
  • 🐧Linux Hardening
    • Checklist - Linux Privilege Escalation
    • Linux Privilege Escalation
      • Arbitrary File Write to Root
      • Cisco - vmanage
      • Containerd (ctr) Privilege Escalation
      • D-Bus Enumeration & Command Injection Privilege Escalation
      • Docker Security
        • Abusing Docker Socket for Privilege Escalation
        • AppArmor
        • AuthZ& AuthN - Docker Access Authorization Plugin
        • CGroups
        • Docker --privileged
        • Docker Breakout / Privilege Escalation
          • release_agent exploit - Relative Paths to PIDs
          • Docker release_agent cgroups escape
          • Sensitive Mounts
        • Namespaces
          • CGroup Namespace
          • IPC Namespace
          • PID Namespace
          • Mount Namespace
          • Network Namespace
          • Time Namespace
          • User Namespace
          • UTS Namespace
        • Seccomp
        • Weaponizing Distroless
      • Escaping from Jails
      • euid, ruid, suid
      • Interesting Groups - Linux Privesc
        • lxd/lxc Group - Privilege escalation
      • Logstash
      • ld.so privesc exploit example
      • Linux Active Directory
      • Linux Capabilities
      • NFS no_root_squash/no_all_squash misconfiguration PE
      • Node inspector/CEF debug abuse
      • Payloads to execute
      • RunC Privilege Escalation
      • SELinux
      • Socket Command Injection
      • Splunk LPE and Persistence
      • SSH Forward Agent exploitation
      • Wildcards Spare tricks
    • Useful Linux Commands
    • Bypass Linux Restrictions
      • Bypass FS protections: read-only / no-exec / Distroless
        • DDexec / EverythingExec
    • Linux Environment Variables
    • Linux Post-Exploitation
      • PAM - Pluggable Authentication Modules
    • FreeIPA Pentesting
  • 🍏MacOS Hardening
    • macOS Security & Privilege Escalation
      • macOS Apps - Inspecting, debugging and Fuzzing
        • Objects in memory
        • Introduction to x64
        • Introduction to ARM64v8
      • macOS AppleFS
      • macOS Bypassing Firewalls
      • macOS Defensive Apps
      • macOS GCD - Grand Central Dispatch
      • macOS Kernel & System Extensions
        • macOS IOKit
        • macOS Kernel Extensions & Debugging
        • macOS Kernel Vulnerabilities
        • macOS System Extensions
      • macOS Network Services & Protocols
      • macOS File Extension & URL scheme app handlers
      • macOS Files, Folders, Binaries & Memory
        • macOS Bundles
        • macOS Installers Abuse
        • macOS Memory Dumping
        • macOS Sensitive Locations & Interesting Daemons
        • macOS Universal binaries & Mach-O Format
      • macOS Objective-C
      • macOS Privilege Escalation
      • macOS Process Abuse
        • macOS Dirty NIB
        • macOS Chromium Injection
        • macOS Electron Applications Injection
        • macOS Function Hooking
        • macOS IPC - Inter Process Communication
          • macOS MIG - Mach Interface Generator
          • macOS XPC
            • macOS XPC Authorization
            • macOS XPC Connecting Process Check
              • macOS PID Reuse
              • macOS xpc_connection_get_audit_token Attack
          • macOS Thread Injection via Task port
        • macOS Java Applications Injection
        • macOS Library Injection
          • macOS Dyld Hijacking & DYLD_INSERT_LIBRARIES
          • macOS Dyld Process
        • macOS Perl Applications Injection
        • macOS Python Applications Injection
        • macOS Ruby Applications Injection
        • macOS .Net Applications Injection
      • macOS Security Protections
        • macOS Gatekeeper / Quarantine / XProtect
        • macOS Launch/Environment Constraints & Trust Cache
        • macOS Sandbox
          • macOS Default Sandbox Debug
          • macOS Sandbox Debug & Bypass
            • macOS Office Sandbox Bypasses
        • macOS Authorizations DB & Authd
        • macOS SIP
        • macOS TCC
          • macOS Apple Events
          • macOS TCC Bypasses
            • macOS Apple Scripts
          • macOS TCC Payloads
        • macOS Dangerous Entitlements & TCC perms
        • macOS - AMFI - AppleMobileFileIntegrity
        • macOS MACF - Mandatory Access Control Framework
        • macOS Code Signing
        • macOS FS Tricks
          • macOS xattr-acls extra stuff
      • macOS Users & External Accounts
    • macOS Red Teaming
      • macOS MDM
        • Enrolling Devices in Other Organisations
        • macOS Serial Number
      • macOS Keychain
    • macOS Useful Commands
    • macOS Auto Start
  • 🪟Windows Hardening
    • Checklist - Local Windows Privilege Escalation
    • Windows Local Privilege Escalation
      • Abusing Tokens
      • Access Tokens
      • ACLs - DACLs/SACLs/ACEs
      • AppendData/AddSubdirectory permission over service registry
      • Create MSI with WIX
      • COM Hijacking
      • Dll Hijacking
        • Writable Sys Path +Dll Hijacking Privesc
      • DPAPI - Extracting Passwords
      • From High Integrity to SYSTEM with Name Pipes
      • Integrity Levels
      • JuicyPotato
      • Leaked Handle Exploitation
      • MSI Wrapper
      • Named Pipe Client Impersonation
      • Privilege Escalation with Autoruns
      • RoguePotato, PrintSpoofer, SharpEfsPotato, GodPotato
      • SeDebug + SeImpersonate copy token
      • SeImpersonate from High To System
      • Windows C Payloads
    • Active Directory Methodology
      • Abusing Active Directory ACLs/ACEs
        • Shadow Credentials
      • AD Certificates
        • AD CS Account Persistence
        • AD CS Domain Escalation
        • AD CS Domain Persistence
        • AD CS Certificate Theft
      • AD information in printers
      • AD DNS Records
      • ASREPRoast
      • BloodHound & Other AD Enum Tools
      • Constrained Delegation
      • Custom SSP
      • DCShadow
      • DCSync
      • Diamond Ticket
      • DSRM Credentials
      • External Forest Domain - OneWay (Inbound) or bidirectional
      • External Forest Domain - One-Way (Outbound)
      • Golden Ticket
      • Kerberoast
      • Kerberos Authentication
      • Kerberos Double Hop Problem
      • LAPS
      • MSSQL AD Abuse
      • Over Pass the Hash/Pass the Key
      • Pass the Ticket
      • Password Spraying / Brute Force
      • PrintNightmare
      • Force NTLM Privileged Authentication
      • Privileged Groups
      • RDP Sessions Abuse
      • Resource-based Constrained Delegation
      • Security Descriptors
      • SID-History Injection
      • Silver Ticket
      • Skeleton Key
      • Unconstrained Delegation
    • Windows Security Controls
      • UAC - User Account Control
    • NTLM
      • Places to steal NTLM creds
    • Lateral Movement
      • AtExec / SchtasksExec
      • DCOM Exec
      • PsExec/Winexec/ScExec
      • SmbExec/ScExec
      • WinRM
      • WmiExec
    • Pivoting to the Cloud
    • Stealing Windows Credentials
      • Windows Credentials Protections
      • Mimikatz
      • WTS Impersonator
    • Basic Win CMD for Pentesters
    • Basic PowerShell for Pentesters
      • PowerView/SharpView
    • Antivirus (AV) Bypass
  • 📱Mobile Pentesting
    • Android APK Checklist
    • Android Applications Pentesting
      • Android Applications Basics
      • Android Task Hijacking
      • ADB Commands
      • APK decompilers
      • AVD - Android Virtual Device
      • Bypass Biometric Authentication (Android)
      • content:// protocol
      • Drozer Tutorial
        • Exploiting Content Providers
      • Exploiting a debuggeable application
      • Frida Tutorial
        • Frida Tutorial 1
        • Frida Tutorial 2
        • Frida Tutorial 3
        • Objection Tutorial
      • Google CTF 2018 - Shall We Play a Game?
      • Install Burp Certificate
      • Intent Injection
      • Make APK Accept CA Certificate
      • Manual DeObfuscation
      • React Native Application
      • Reversing Native Libraries
      • Smali - Decompiling/[Modifying]/Compiling
      • Spoofing your location in Play Store
      • Tapjacking
      • Webview Attacks
    • iOS Pentesting Checklist
    • iOS Pentesting
      • iOS App Extensions
      • iOS Basics
      • iOS Basic Testing Operations
      • iOS Burp Suite Configuration
      • iOS Custom URI Handlers / Deeplinks / Custom Schemes
      • iOS Extracting Entitlements From Compiled Application
      • iOS Frida Configuration
      • iOS Hooking With Objection
      • iOS Protocol Handlers
      • iOS Serialisation and Encoding
      • iOS Testing Environment
      • iOS UIActivity Sharing
      • iOS Universal Links
      • iOS UIPasteboard
      • iOS WebViews
    • Cordova Apps
    • Xamarin Apps
  • 👽Network Services Pentesting
    • Pentesting JDWP - Java Debug Wire Protocol
    • Pentesting Printers
    • Pentesting SAP
    • Pentesting VoIP
      • Basic VoIP Protocols
        • SIP (Session Initiation Protocol)
    • Pentesting Remote GdbServer
    • 7/tcp/udp - Pentesting Echo
    • 21 - Pentesting FTP
      • FTP Bounce attack - Scan
      • FTP Bounce - Download 2ºFTP file
    • 22 - Pentesting SSH/SFTP
    • 23 - Pentesting Telnet
    • 25,465,587 - Pentesting SMTP/s
      • SMTP Smuggling
      • SMTP - Commands
    • 43 - Pentesting WHOIS
    • 49 - Pentesting TACACS+
    • 53 - Pentesting DNS
    • 69/UDP TFTP/Bittorrent-tracker
    • 79 - Pentesting Finger
    • 80,443 - Pentesting Web Methodology
      • 403 & 401 Bypasses
      • AEM - Adobe Experience Cloud
      • Angular
      • Apache
      • Artifactory Hacking guide
      • Bolt CMS
      • Buckets
        • Firebase Database
      • CGI
      • DotNetNuke (DNN)
      • Drupal
        • Drupal RCE
      • Electron Desktop Apps
        • Electron contextIsolation RCE via preload code
        • Electron contextIsolation RCE via Electron internal code
        • Electron contextIsolation RCE via IPC
      • Flask
      • NodeJS Express
      • Git
      • Golang
      • GWT - Google Web Toolkit
      • Grafana
      • GraphQL
      • H2 - Java SQL database
      • IIS - Internet Information Services
      • ImageMagick Security
      • JBOSS
      • Jira & Confluence
      • Joomla
      • JSP
      • Laravel
      • Moodle
      • Nginx
      • NextJS
      • PHP Tricks
        • PHP - Useful Functions & disable_functions/open_basedir bypass
          • disable_functions bypass - php-fpm/FastCGI
          • disable_functions bypass - dl function
          • disable_functions bypass - PHP 7.0-7.4 (*nix only)
          • disable_functions bypass - Imagick <= 3.3.0 PHP >= 5.4 Exploit
          • disable_functions - PHP 5.x Shellshock Exploit
          • disable_functions - PHP 5.2.4 ionCube extension Exploit
          • disable_functions bypass - PHP <= 5.2.9 on windows
          • disable_functions bypass - PHP 5.2.4 and 5.2.5 PHP cURL
          • disable_functions bypass - PHP safe_mode bypass via proc_open() and custom environment Exploit
          • disable_functions bypass - PHP Perl Extension Safe_mode Bypass Exploit
          • disable_functions bypass - PHP 5.2.3 - Win32std ext Protections Bypass
          • disable_functions bypass - PHP 5.2 - FOpen Exploit
          • disable_functions bypass - via mem
          • disable_functions bypass - mod_cgi
          • disable_functions bypass - PHP 4 >= 4.2.0, PHP 5 pcntl_exec
        • PHP - RCE abusing object creation: new $_GET["a"]($_GET["b"])
        • PHP SSRF
      • PrestaShop
      • Python
      • Rocket Chat
      • Special HTTP headers
      • Source code Review / SAST Tools
      • Spring Actuators
      • Symfony
      • Tomcat
        • Basic Tomcat Info
      • Uncovering CloudFlare
      • VMWare (ESX, VCenter...)
      • Web API Pentesting
      • WebDav
      • Werkzeug / Flask Debug
      • Wordpress
    • 88tcp/udp - Pentesting Kerberos
      • Harvesting tickets from Windows
      • Harvesting tickets from Linux
    • 110,995 - Pentesting POP
    • 111/TCP/UDP - Pentesting Portmapper
    • 113 - Pentesting Ident
    • 123/udp - Pentesting NTP
    • 135, 593 - Pentesting MSRPC
    • 137,138,139 - Pentesting NetBios
    • 139,445 - Pentesting SMB
      • rpcclient enumeration
    • 143,993 - Pentesting IMAP
    • 161,162,10161,10162/udp - Pentesting SNMP
      • Cisco SNMP
      • SNMP RCE
    • 194,6667,6660-7000 - Pentesting IRC
    • 264 - Pentesting Check Point FireWall-1
    • 389, 636, 3268, 3269 - Pentesting LDAP
    • 500/udp - Pentesting IPsec/IKE VPN
    • 502 - Pentesting Modbus
    • 512 - Pentesting Rexec
    • 513 - Pentesting Rlogin
    • 514 - Pentesting Rsh
    • 515 - Pentesting Line Printer Daemon (LPD)
    • 548 - Pentesting Apple Filing Protocol (AFP)
    • 554,8554 - Pentesting RTSP
    • 623/UDP/TCP - IPMI
    • 631 - Internet Printing Protocol(IPP)
    • 700 - Pentesting EPP
    • 873 - Pentesting Rsync
    • 1026 - Pentesting Rusersd
    • 1080 - Pentesting Socks
    • 1098/1099/1050 - Pentesting Java RMI - RMI-IIOP
    • 1414 - Pentesting IBM MQ
    • 1433 - Pentesting MSSQL - Microsoft SQL Server
      • Types of MSSQL Users
    • 1521,1522-1529 - Pentesting Oracle TNS Listener
    • 1723 - Pentesting PPTP
    • 1883 - Pentesting MQTT (Mosquitto)
    • 2049 - Pentesting NFS Service
    • 2301,2381 - Pentesting Compaq/HP Insight Manager
    • 2375, 2376 Pentesting Docker
    • 3128 - Pentesting Squid
    • 3260 - Pentesting ISCSI
    • 3299 - Pentesting SAPRouter
    • 3306 - Pentesting Mysql
    • 3389 - Pentesting RDP
    • 3632 - Pentesting distcc
    • 3690 - Pentesting Subversion (svn server)
    • 3702/UDP - Pentesting WS-Discovery
    • 4369 - Pentesting Erlang Port Mapper Daemon (epmd)
    • 4786 - Cisco Smart Install
    • 4840 - OPC Unified Architecture
    • 5000 - Pentesting Docker Registry
    • 5353/UDP Multicast DNS (mDNS) and DNS-SD
    • 5432,5433 - Pentesting Postgresql
    • 5439 - Pentesting Redshift
    • 5555 - Android Debug Bridge
    • 5601 - Pentesting Kibana
    • 5671,5672 - Pentesting AMQP
    • 5800,5801,5900,5901 - Pentesting VNC
    • 5984,6984 - Pentesting CouchDB
    • 5985,5986 - Pentesting WinRM
    • 5985,5986 - Pentesting OMI
    • 6000 - Pentesting X11
    • 6379 - Pentesting Redis
    • 8009 - Pentesting Apache JServ Protocol (AJP)
    • 8086 - Pentesting InfluxDB
    • 8089 - Pentesting Splunkd
    • 8333,18333,38333,18444 - Pentesting Bitcoin
    • 9000 - Pentesting FastCGI
    • 9001 - Pentesting HSQLDB
    • 9042/9160 - Pentesting Cassandra
    • 9100 - Pentesting Raw Printing (JetDirect, AppSocket, PDL-datastream)
    • 9200 - Pentesting Elasticsearch
    • 10000 - Pentesting Network Data Management Protocol (ndmp)
    • 11211 - Pentesting Memcache
      • Memcache Commands
    • 15672 - Pentesting RabbitMQ Management
    • 24007,24008,24009,49152 - Pentesting GlusterFS
    • 27017,27018 - Pentesting MongoDB
    • 44134 - Pentesting Tiller (Helm)
    • 44818/UDP/TCP - Pentesting EthernetIP
    • 47808/udp - Pentesting BACNet
    • 50030,50060,50070,50075,50090 - Pentesting Hadoop
  • 🕸️Pentesting Web
    • Web Vulnerabilities Methodology
    • Reflecting Techniques - PoCs and Polygloths CheatSheet
      • Web Vulns List
    • 2FA/MFA/OTP Bypass
    • Account Takeover
    • Browser Extension Pentesting Methodology
      • BrowExt - ClickJacking
      • BrowExt - permissions & host_permissions
      • BrowExt - XSS Example
    • Bypass Payment Process
    • Captcha Bypass
    • Cache Poisoning and Cache Deception
      • Cache Poisoning via URL discrepancies
      • Cache Poisoning to DoS
    • Clickjacking
    • Client Side Template Injection (CSTI)
    • Client Side Path Traversal
    • Command Injection
    • Content Security Policy (CSP) Bypass
      • CSP bypass: self + 'unsafe-inline' with Iframes
    • Cookies Hacking
      • Cookie Tossing
      • Cookie Jar Overflow
      • Cookie Bomb
    • CORS - Misconfigurations & Bypass
    • CRLF (%0D%0A) Injection
    • CSRF (Cross Site Request Forgery)
    • Dangling Markup - HTML scriptless injection
      • SS-Leaks
    • Dependency Confusion
    • Deserialization
      • NodeJS - __proto__ & prototype Pollution
        • Client Side Prototype Pollution
        • Express Prototype Pollution Gadgets
        • Prototype Pollution to RCE
      • Java JSF ViewState (.faces) Deserialization
      • Java DNS Deserialization, GadgetProbe and Java Deserialization Scanner
      • Basic Java Deserialization (ObjectInputStream, readObject)
      • PHP - Deserialization + Autoload Classes
      • CommonsCollection1 Payload - Java Transformers to Rutime exec() and Thread Sleep
      • Basic .Net deserialization (ObjectDataProvider gadget, ExpandedWrapper, and Json.Net)
      • Exploiting __VIEWSTATE knowing the secrets
      • Exploiting __VIEWSTATE without knowing the secrets
      • Python Yaml Deserialization
      • JNDI - Java Naming and Directory Interface & Log4Shell
      • Ruby Class Pollution
    • Domain/Subdomain takeover
    • Email Injections
    • File Inclusion/Path traversal
      • phar:// deserialization
      • LFI2RCE via PHP Filters
      • LFI2RCE via Nginx temp files
      • LFI2RCE via PHP_SESSION_UPLOAD_PROGRESS
      • LFI2RCE via Segmentation Fault
      • LFI2RCE via phpinfo()
      • LFI2RCE Via temp file uploads
      • LFI2RCE via Eternal waiting
      • LFI2RCE Via compress.zlib + PHP_STREAM_PREFER_STUDIO + Path Disclosure
    • File Upload
      • PDF Upload - XXE and CORS bypass
    • Formula/CSV/Doc/LaTeX/GhostScript Injection
    • gRPC-Web Pentest
    • HTTP Connection Contamination
    • HTTP Connection Request Smuggling
    • HTTP Request Smuggling / HTTP Desync Attack
      • Browser HTTP Request Smuggling
      • Request Smuggling in HTTP/2 Downgrades
    • HTTP Response Smuggling / Desync
    • Upgrade Header Smuggling
    • hop-by-hop headers
    • IDOR
    • JWT Vulnerabilities (Json Web Tokens)
    • LDAP Injection
    • Login Bypass
      • Login bypass List
    • NoSQL injection
    • OAuth to Account takeover
    • Open Redirect
    • ORM Injection
    • Parameter Pollution
    • Phone Number Injections
    • PostMessage Vulnerabilities
      • Blocking main page to steal postmessage
      • Bypassing SOP with Iframes - 1
      • Bypassing SOP with Iframes - 2
      • Steal postmessage modifying iframe location
    • Proxy / WAF Protections Bypass
    • Race Condition
    • Rate Limit Bypass
    • Registration & Takeover Vulnerabilities
    • Regular expression Denial of Service - ReDoS
    • Reset/Forgotten Password Bypass
    • Reverse Tab Nabbing
    • SAML Attacks
      • SAML Basics
    • Server Side Inclusion/Edge Side Inclusion Injection
    • SQL Injection
      • MS Access SQL Injection
      • MSSQL Injection
      • MySQL injection
        • MySQL File priv to SSRF/RCE
      • Oracle injection
      • Cypher Injection (neo4j)
      • PostgreSQL injection
        • dblink/lo_import data exfiltration
        • PL/pgSQL Password Bruteforce
        • Network - Privesc, Port Scanner and NTLM chanllenge response disclosure
        • Big Binary Files Upload (PostgreSQL)
        • RCE with PostgreSQL Languages
        • RCE with PostgreSQL Extensions
      • SQLMap - CheatSheet
        • Second Order Injection - SQLMap
    • SSRF (Server Side Request Forgery)
      • URL Format Bypass
      • SSRF Vulnerable Platforms
      • Cloud SSRF
    • SSTI (Server Side Template Injection)
      • EL - Expression Language
      • Jinja2 SSTI
    • Timing Attacks
    • Unicode Injection
      • Unicode Normalization
    • UUID Insecurities
    • WebSocket Attacks
    • Web Tool - WFuzz
    • XPATH injection
    • XSLT Server Side Injection (Extensible Stylesheet Language Transformations)
    • XXE - XEE - XML External Entity
    • XSS (Cross Site Scripting)
      • Abusing Service Workers
      • Chrome Cache to XSS
      • Debugging Client Side JS
      • Dom Clobbering
      • DOM Invader
      • DOM XSS
      • Iframes in XSS, CSP and SOP
      • Integer Overflow
      • JS Hoisting
      • Misc JS Tricks & Relevant Info
      • PDF Injection
      • Server Side XSS (Dynamic PDF)
      • Shadow DOM
      • SOME - Same Origin Method Execution
      • Sniff Leak
      • Steal Info JS
      • XSS in Markdown
    • XSSI (Cross-Site Script Inclusion)
    • XS-Search/XS-Leaks
      • Connection Pool Examples
      • Connection Pool by Destination Example
      • Cookie Bomb + Onerror XS Leak
      • URL Max Length - Client Side
      • performance.now example
      • performance.now + Force heavy task
      • Event Loop Blocking + Lazy images
      • JavaScript Execution XS Leak
      • CSS Injection
        • CSS Injection Code
    • Iframe Traps
  • ⛈️Cloud Security
    • Pentesting Kubernetes
    • Pentesting Cloud (AWS, GCP, Az...)
    • Pentesting CI/CD (Github, Jenkins, Terraform...)
  • 😎Hardware/Physical Access
    • Physical Attacks
    • Escaping from KIOSKs
    • Firmware Analysis
      • Bootloader testing
      • Firmware Integrity
  • 🎯Binary Exploitation
    • Basic Stack Binary Exploitation Methodology
      • ELF Basic Information
      • Exploiting Tools
        • PwnTools
    • Stack Overflow
      • Pointer Redirecting
      • Ret2win
        • Ret2win - arm64
      • Stack Shellcode
        • Stack Shellcode - arm64
      • Stack Pivoting - EBP2Ret - EBP chaining
      • Uninitialized Variables
    • ROP - Return Oriented Programing
      • BROP - Blind Return Oriented Programming
      • Ret2csu
      • Ret2dlresolve
      • Ret2esp / Ret2reg
      • Ret2lib
        • Leaking libc address with ROP
          • Leaking libc - template
        • One Gadget
        • Ret2lib + Printf leak - arm64
      • Ret2syscall
        • Ret2syscall - ARM64
      • Ret2vDSO
      • SROP - Sigreturn-Oriented Programming
        • SROP - ARM64
    • Array Indexing
    • Integer Overflow
    • Format Strings
      • Format Strings - Arbitrary Read Example
      • Format Strings Template
    • Libc Heap
      • Bins & Memory Allocations
      • Heap Memory Functions
        • free
        • malloc & sysmalloc
        • unlink
        • Heap Functions Security Checks
      • Use After Free
        • First Fit
      • Double Free
      • Overwriting a freed chunk
      • Heap Overflow
      • Unlink Attack
      • Fast Bin Attack
      • Unsorted Bin Attack
      • Large Bin Attack
      • Tcache Bin Attack
      • Off by one overflow
      • House of Spirit
      • House of Lore | Small bin Attack
      • House of Einherjar
      • House of Force
      • House of Orange
      • House of Rabbit
      • House of Roman
    • Common Binary Exploitation Protections & Bypasses
      • ASLR
        • Ret2plt
        • Ret2ret & Reo2pop
      • CET & Shadow Stack
      • Libc Protections
      • Memory Tagging Extension (MTE)
      • No-exec / NX
      • PIE
        • BF Addresses in the Stack
      • Relro
      • Stack Canaries
        • BF Forked & Threaded Stack Canaries
        • Print Stack Canary
    • Write What Where 2 Exec
      • WWW2Exec - atexit()
      • WWW2Exec - .dtors & .fini_array
      • WWW2Exec - GOT/PLT
      • WWW2Exec - __malloc_hook & __free_hook
    • Common Exploiting Problems
    • Windows Exploiting (Basic Guide - OSCP lvl)
    • iOS Exploiting
  • 🔩Reversing
    • Reversing Tools & Basic Methods
      • Angr
        • Angr - Examples
      • Z3 - Satisfiability Modulo Theories (SMT)
      • Cheat Engine
      • Blobrunner
    • Common API used in Malware
    • Word Macros
  • 🔮Crypto & Stego
    • Cryptographic/Compression Algorithms
      • Unpacking binaries
    • Certificates
    • Cipher Block Chaining CBC-MAC
    • Crypto CTFs Tricks
    • Electronic Code Book (ECB)
    • Hash Length Extension Attack
    • Padding Oracle
    • RC4 - Encrypt&Decrypt
    • Stego Tricks
    • Esoteric languages
    • Blockchain & Crypto Currencies
  • 🦂C2
    • Salseo
    • ICMPsh
    • Cobalt Strike
  • ✍️TODO
    • Other Big References
    • Rust Basics
    • More Tools
    • MISC
    • Pentesting DNS
    • Hardware Hacking
      • I2C
      • UART
      • Radio
      • JTAG
      • SPI
    • Industrial Control Systems Hacking
      • Modbus Protocol
    • Radio Hacking
      • Pentesting RFID
      • Infrared
      • Sub-GHz RF
      • iButton
      • Flipper Zero
        • FZ - NFC
        • FZ - Sub-GHz
        • FZ - Infrared
        • FZ - iButton
        • FZ - 125kHz RFID
      • Proxmark 3
      • FISSURE - The RF Framework
      • Low-Power Wide Area Network
      • Pentesting BLE - Bluetooth Low Energy
    • Industrial Control Systems Hacking
    • Test LLMs
    • LLM Training
      • 0. Basic LLM Concepts
      • 1. Tokenizing
      • 2. Data Sampling
      • 3. Token Embeddings
      • 4. Attention Mechanisms
      • 5. LLM Architecture
      • 6. Pre-training & Loading models
      • 7.0. LoRA Improvements in fine-tuning
      • 7.1. Fine-Tuning for Classification
      • 7.2. Fine-Tuning to follow instructions
    • Burp Suite
    • Other Web Tricks
    • Interesting HTTP
    • Android Forensics
    • TR-069
    • 6881/udp - Pentesting BitTorrent
    • Online Platforms with API
    • Stealing Sensitive Information Disclosure from a Web
    • Post Exploitation
    • Investment Terms
    • Cookies Policy
Powered by GitBook
On this page
  • The difference
  • Cache Poisoning
  • Discovery: Check HTTP headers
  • Discovery: Caching error codes
  • Discovery: Identify and evaluate unkeyed inputs
  • Elicit a harmful response from the back-end server
  • Get the response cached
  • Exploiting Examples
  • Easiest example
  • Cache poisoning to DoS
  • Using web cache poisoning to exploit cookie-handling vulnerabilities
  • Generating discrepancies with delimiters, normalization and dots
  • Cache poisoning with path traversal to steal API key
  • Using multiple headers to exploit web cache poisoning vulnerabilities
  • Exploiting with limited Varyheader
  • Fat Get
  • Parameter Cloacking
  • Exploiting HTTP Cache Poisoning by abusing HTTP Request Smuggling
  • Automated testing for Web Cache Poisoning
  • Vulnerable Examples
  • Apache Traffic Server (CVE-2021-27577)
  • GitHub CP-DoS
  • GitLab + GCP CP-DoS
  • Rack Middleware (Ruby on Rails)
  • 403 and Storage Buckets
  • Injecting Keyed Parameters
  • User Agent Rules
  • Illegal Header Fields
  • Finding new headers
  • Cache Deception
  • Automatic Tools
  • References
Edit on GitHub
  1. Pentesting Web

Cache Poisoning and Cache Deception

PreviousCaptcha BypassNextCache Poisoning via URL discrepancies

Last updated 7 months ago

Learn & practice AWS Hacking: Learn & practice GCP Hacking:

Support HackTricks
  • Check the !

  • Join the 💬 or the or follow us on Twitter 🐦 .

  • Share hacking tricks by submitting PRs to the and github repos.

The difference

What is the difference between web cache poisoning and web cache deception?

  • In web cache poisoning, the attacker causes the application to store some malicious content in the cache, and this content is served from the cache to other application users.

  • In web cache deception, the attacker causes the application to store some sensitive content belonging to another user in the cache, and the attacker then retrieves this content from the cache.

Cache Poisoning

Cache poisoning is aimed at manipulating the client-side cache to force clients to load resources that are unexpected, partial, or under the control of an attacker. The extent of the impact is contingent on the popularity of the affected page, as the tainted response is served exclusively to users visiting the page during the period of cache contamination.

The execution of a cache poisoning assault involves several steps:

  1. Identification of Unkeyed Inputs: These are parameters that, although not required for a request to be cached, can alter the response returned by the server. Identifying these inputs is crucial as they can be exploited to manipulate the cache.

  2. Exploitation of the Unkeyed Inputs: After identifying the unkeyed inputs, the next step involves figuring out how to misuse these parameters to modify the server's response in a way that benefits the attacker.

  3. Ensuring the Poisoned Response is Cached: The final step is to ensure that the manipulated response is stored in the cache. This way, any user accessing the affected page while the cache is poisoned will receive the tainted response.

Discovery: Check HTTP headers

Discovery: Caching error codes

If you are thinking that the response is being stored in a cache, you could try to send requests with a bad header, which should be responded to with a status code 400. Then try to access the request normally and if the response is a 400 status code, you know it's vulnerable (and you could even perform a DoS).

You can find more options in:

However, note that sometimes these kinds of status codes aren't cached so this test could not be reliable.

Discovery: Identify and evaluate unkeyed inputs

<script type="text/javascript" src="//<X-Forwarded-For_value>/resources/js/tracking.js"></script>

Elicit a harmful response from the back-end server

With the parameter/header identified check how it is being sanitised and where is it getting reflected or affecting the response from the header. Can you abuse it anyway (perform an XSS or load a JS code controlled by you? perform a DoS?...)

Get the response cached

Once you have identified the page that can be abused, which parameter/header to use and how to abuse it, you need to get the page cached. Depending on the resource you are trying to get in the cache this could take some time, you might need to be trying for several seconds.

The header X-Cache in the response could be very useful as it may have the value miss when the request wasn't cached and the value hit when it is cached. The header Cache-Control is also interesting to know if a resource is being cached and when will be the next time the resource will be cached again: Cache-Control: public, max-age=1800

Another interesting header is Vary. This header is often used to indicate additional headers that are treated as part of the cache key even if they are normally unkeyed. Therefore, if the user knows the User-Agent of the victim he is targeting, he can poison the cache for the users using that specific User-Agent.

One more header related to the cache is Age. It defines the times in seconds the object has been in the proxy cache.

When caching a request, be careful with the headers you use because some of them could be used unexpectedly as keyed and the victim will need to use that same header. Always test a Cache Poisoning with different browsers to check if it's working.

Exploiting Examples

Easiest example

A header like X-Forwarded-For is being reflected in the response unsanitized. You can send a basic XSS payload and poison the cache so everybody that accesses the page will be XSSed:

GET /en?region=uk HTTP/1.1
Host: innocent-website.com
X-Forwarded-Host: a."><script>alert(1)</script>"

Note that this will poison a request to /en?region=uk not to /en

Cache poisoning to DoS

Using web cache poisoning to exploit cookie-handling vulnerabilities

Cookies could also be reflected on the response of a page. If you can abuse it to cause a XSS for example, you could be able to exploit XSS in several clients that load the malicious cache response.

GET / HTTP/1.1
Host: vulnerable.com
Cookie: session=VftzO7ZtiBj5zNLRAuFpXpSQLjS4lBmU; fehost=asd"%2balert(1)%2b"

Note that if the vulnerable cookie is very used by the users, regular requests will be cleaning the cache.

Generating discrepancies with delimiters, normalization and dots

Check:

Cache poisoning with path traversal to steal API key

This is also explained better in:

Using multiple headers to exploit web cache poisoning vulnerabilities

Sometimes you will need to exploit several unkeyed inputs to be able to abuse a cache. For example, you may find an Open redirect if you set X-Forwarded-Host to a domain controlled by you and X-Forwarded-Scheme to http.If the server is forwarding all the HTTP requests to HTTPS and using the header X-Forwarded-Scheme as the domain name for the redirect. You can control where the page is pointed by the redirect.

GET /resources/js/tracking.js HTTP/1.1
Host: acc11fe01f16f89c80556c2b0056002e.web-security-academy.net
X-Forwarded-Host: ac8e1f8f1fb1f8cb80586c1d01d500d3.web-security-academy.net/
X-Forwarded-Scheme: http

Exploiting with limited Varyheader

If you found that the X-Host header is being used as domain name to load a JS resource but the Vary header in the response is indicating User-Agent. Then, you need to find a way to exfiltrate the User-Agent of the victim and poison the cache using that user agent:

GET / HTTP/1.1
Host: vulnerbale.net
User-Agent: THE SPECIAL USER-AGENT OF THE VICTIM
X-Host: attacker.com

Fat Get

Send a GET request with the request in the URL and in the body. If the web server uses the one from the body but the cache server caches the one from the URL, anyone accessing that URL will actually use the parameter from the body. Like the vuln James Kettle found at the Github website:

GET /contact/report-abuse?report=albinowax HTTP/1.1
Host: github.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 22

report=innocent-victim

Parameter Cloacking

For example it's possible to separate parameters in ruby servers using the char ; instead of &. This could be used to put unkeyed parameters values inside keyed ones and abuse them.

Exploiting HTTP Cache Poisoning by abusing HTTP Request Smuggling

Automated testing for Web Cache Poisoning

Example usage: wcvs -u example.com

Vulnerable Examples

ATS forwarded the fragment inside the URL without stripping it and generated the cache key only using the host, path and query (ignoring the fragment). So the request /#/../?r=javascript:alert(1) was sent to the backend as /#/../?r=javascript:alert(1) and the cache key didn't have the payload inside of it, only host, path and query.

GitHub CP-DoS

Sending a bad value in the content-type header triggered a 405 cached response. The cache key contained the cookie so it was possible only to attack unauth users.

GitLab + GCP CP-DoS

GitLab uses GCP buckets to store static content. GCP Buckets support the header x-http-method-override. So it was possible to send the header x-http-method-override: HEAD and poison the cache into returning an empty response body. It could also support the method PURGE.

Rack Middleware (Ruby on Rails)

In Ruby on Rails applications, Rack middleware is often utilized. The purpose of the Rack code is to take the value of the x-forwarded-scheme header and set it as the request's scheme. When the header x-forwarded-scheme: http is sent, a 301 redirect to the same location occurs, potentially causing a Denial of Service (DoS) to that resource. Additionally, the application might acknowledge the X-forwarded-host header and redirect users to the specified host. This behavior can lead to the loading of JavaScript files from an attacker's server, posing a security risk.

403 and Storage Buckets

Cloudflare previously cached 403 responses. Attempting to access S3 or Azure Storage Blobs with incorrect Authorization headers would result in a 403 response that got cached. Although Cloudflare has stopped caching 403 responses, this behavior might still be present in other proxy services.

Injecting Keyed Parameters

Caches often include specific GET parameters in the cache key. For instance, Fastly's Varnish cached the size parameter in requests. However, if a URL-encoded version of the parameter (e.g., siz%65) was also sent with an erroneous value, the cache key would be constructed using the correct size parameter. Yet, the backend would process the value in the URL-encoded parameter. URL-encoding the second size parameter led to its omission by the cache but its utilization by the backend. Assigning a value of 0 to this parameter resulted in a cacheable 400 Bad Request error.

User Agent Rules

Some developers block requests with user-agents matching those of high-traffic tools like FFUF or Nuclei to manage server load. Ironically, this approach can introduce vulnerabilities such as cache poisoning and DoS.

Illegal Header Fields

Finding new headers

Cache Deception

The goal of Cache Deception is to make clients load resources that are going to be saved by the cache with their sensitive information.

First of all note that extensions such as .css, .js, .png etc are usually configured to be saved in the cache. Therefore, if you access www.example.com/profile.php/nonexistent.js the cache will probably store the response because it sees the .js extension. But, if the application is replaying with the sensitive user contents stored in www.example.com/profile.php, you can steal those contents from other users.

Other things to test:

  • www.example.com/profile.php/.js

  • www.example.com/profile.php/.css

  • www.example.com/profile.php/test.js

  • www.example.com/profile.php/../test.js

  • www.example.com/profile.php/%2e%2e/test.js

  • Use lesser known extensions such as .avif

Note that the cache proxy should be configured to cache files based on the extension of the file (.css) and not base on the content-type. In the example http://www.example.com/home.php/non-existent.css will have a text/html content-type instead of a text/css mime type (which is the expected for a .css file).

Automatic Tools

References

Support HackTricks

Use to easily build and automate workflows powered by the world's most advanced community tools. Get Access Today:

Usually, when a response was stored in the cache there will be a header indicating so, you can check which headers you should pay attention to in this post: .

You could use to brute-force parameters and headers that may be changing the response of the page. For example, a page may be using the header X-Forwarded-For to indicate the client to load the script from there:

how it was possible to steal an OpenAI API key with an URL like https://chat.openai.com/share/%2F..%2Fapi/auth/session?cachebuster=123 because anything matching /share/* will be cached without Cloudflare normalising the URL, which was done when the request reached the web server.

There it a portswigger lab about this:

Portswigger lab:

Learn here about how to perform .

The can be used to automatically test for web cache poisoning. It supports many different techniques and is highly customizable.

Apache Traffic Server ()

The specifies the acceptable characters in header names. Headers containing characters outside of the specified tchar range should ideally trigger a 400 Bad Request response. In practice, servers don't always adhere to this standard. A notable example is Akamai, which forwards headers with invalid characters and caches any 400 error, as long as the cache-control header is not present. An exploitable pattern was identified where sending a header with an illegal character, such as \, would result in a cacheable 400 Bad Request error.

Another very clear example can be found in this write-up: . In the example, it is explained that if you load a non-existent page like http://www.example.com/home.php/non-existent.css the content of http://www.example.com/home.php (with the user's sensitive information) is going to be returned and the cache server is going to save the result. Then, the attacker can access http://www.example.com/home.php/non-existent.css in their own browser and observe the confidential information of the users that accessed before.

Learn here about how to perform.

: Golang scanner to find web cache poisoning vulnerabilities in a list of URLs and test multiple injection techniques.

Use to easily build and automate workflows powered by the world's most advanced community tools. Get Access Today:

Learn & practice AWS Hacking: Learn & practice GCP Hacking:

Check the !

Join the 💬 or the or follow us on Twitter 🐦 .

Share hacking tricks by submitting PRs to the and github repos.

🕸️
Trickest
Cache Poisoning to DoS
Param Miner
Cache Poisoning to DoS
Cache Poisoning via URL discrepancies
This writeup explains
Cache Poisoning via URL discrepancies
https://portswigger.net/web-security/web-cache-poisoning/exploiting-implementation-flaws/lab-web-cache-poisoning-fat-get
https://portswigger.net/web-security/web-cache-poisoning/exploiting-implementation-flaws/lab-web-cache-poisoning-param-cloaking
Web Cache Vulnerability Scanner
CVE-2021-27577
RFC7230
https://gist.github.com/iustin24/92a5ba76ee436c85716f003dda8eecc6
https://hackerone.com/reports/593712
toxicache
https://portswigger.net/web-security/web-cache-poisoning
https://portswigger.net/web-security/web-cache-poisoning/exploiting#using-web-cache-poisoning-to-exploit-cookie-handling-vulnerabilities
https://hackerone.com/reports/593712
https://youst.in/posts/cache-poisoning-at-scale/
https://bxmbn.medium.com/how-i-test-for-web-cache-vulnerabilities-tips-and-tricks-9b138da08ff9
https://www.linkedin.com/pulse/how-i-hacked-all-zendesk-sites-265000-site-one-line-abdalhfaz/
Trickest
subscription plans
Discord group
telegram group
@hacktricks_live
HackTricks
HackTricks Cloud
HackTricks Training AWS Red Team Expert (ARTE)
HackTricks Training GCP Red Team Expert (GRTE)
subscription plans
Discord group
telegram group
@hacktricks_live
HackTricks
HackTricks Cloud
HackTricks Training AWS Red Team Expert (ARTE)
HackTricks Training GCP Red Team Expert (GRTE)
Automate OffSec, EASM, and Custom Security Processes | Trickest
Automate OffSec, EASM, and Custom Security Processes | Trickest
HTTP Cache headers
Logo
Logo
Cache Poisoning attacks by abusing HTTP Request Smuggling
Cache Deceptions attacks abusing HTTP Request Smuggling